Kỳ thực, Đỗ Thải Hà cũng không cuồng ngạo như nàng ta thể hiện ra. Lý do thật sự cô nàng đưa ra lời thách đấu như vừa rồi là do tò mò về bản lĩnh thật sự của Nho môn cũng như bộ môn có nhiều điểm tương đồng với Số học mà sư phụ dạy.
Sau khi đấu với bốn người Trần đại nho, Đỗ Thải Hà cũng đã nhận ra Nho đạo tu hành hẳn có một con đường khá giống với Số học. Thậm chí, nàng ta hoài nghi, liệu môn Cửu Số trong miệng phó quán chủ Lam Ba thư quán kia, có lẽ nào có chung nguồn gốc với Số học mà Nguyễn Đông Thanh dạy hay không. Chính vì vậy mới tương kế tựu kế, mượn cơ hội để tìm hiểu thêm địch tình.
Nhiệm vụ của Đỗ Thải Hà là lan truyền “sở tác của sư phụ” ra ngoài, việc cô nàng tranh thủ kiếm thêm đồng ra đồng vào làm sinh hoạt phí cho cổ viện hoàn toàn chỉ là tiện tay. Lại nói, “thất phu vô tội, hoài bích kỳ tội”. Mang nhiều tiền trong người mà không có bản lãnh tương xứng, kỳ thực chỉ tăng thêm nguy hiểm cho chính mình mà thôi. Thành thử, sau khi thắng được bốn người Lê tiến sĩ, Đỗ Thải Hà đã tương đối hài lòng. Tiếp theo đó, có thắng thêm được hay không kỳ thực đối với nàng ta không còn quan trọng. Dẫu sao, cô nàng cũng không có ý định giữ toàn bộ số tiền kiếm được hôm này mà đang chuẩn bị ném “củ khoai lang nóng bỏng tay” này cho người khác cầm. Nếu đã vậy, tội gì không hống hách một phen, triệt để khiêu khích cho đối phương giở hết chân tài thực học ra, cho bản thân dễ bề thăm dò tìm hiểu?
Dù gì, Nho môn cũng cổ viện sợ là tương lai sẽ còn có xích mích. Nên nếu chân tài thực học của Nho môn có thể làm khó được cô nàng bây giờ, thì sớm thua trận nhỏ để biết đường mà tìm hiểu thêm về đối phương cũng còn hơn là sau này không có chuẩn bị mà thua trận lớn hơn. Tất nhiên, nếu có thể tiếp tục thắng, nàng ta cũng sẽ không ngại tuyên cáo cho toàn Huyền Hoàng giới, ánh mắt chọn đồ đệ của Bích Mặc tiên sinh không kém!
Mà Đỗ Thải Hà phỏng đoán cũng không quá xa vời với thực tế: Số học hiện đại mà nàng ta được dạy có thể tính là bản đầy đủ hơn của Cửu Số, với một số khác biệt cơ bản.
Khác biệt đầu tiên và cũng là rõ ràng nhất, chính là bản thân hệ thống chữ số Ả-rập và ký hiệu toán học (còn gọi ngắn là “dấu”). Riêng cái khác biệt này thôi đã là sự biến đổi rõ ràng trong việc tiết kiệm thời gian và không gian cho tính toán rồi. Trước khi sử dụng chữ số Ả-rập và các dấu phép toán, cần quá nhiều giấy để diễn đạt các phép tính đơn giản, lại dễ xảy ra sai sót.
Khác biệt lớn thứ hai, có lẽ phải nói đến khái niệm số âm, và khái niệm vô cực. Cửu Số của Huyền Hoàng giới chưa có hai khái niệm này, còn trong Số học Nguyễn Đông Thanh dạy cho Đỗ Thải Hà, thì đây lại là một trong những khái niệm cơ bản, nền móng nhất. Mà bởi vậy, có thể tưởng tượng, khi đi sâu hơn vào các kiến thức, phương trình sau này, khác biệt cơ bản này sẽ tạo ra hiệu ứng dây chuyền, làm nền cho nhiều khác biệt mang tính hệ thống khác.
Khác biệt cơ bản cuối cùng, có lẽ phải kể đến đồ thị hàm số. Cửu Số ở Huyền Hoàng giới chưa sử dụng đến đồ thị để hình dung hàm số, còn Số học hiện đại mà Đỗ Thải Hà được học, thì lại nghiên cứu về đồ thị từ rất sớm. Thậm chí, sử dụng đồ thị để hình dung, tìm nghiệm cho phương trình.
Mà chỉ vì ba khác biệt cơ bản này, mà đi lên cao hơn, Cửu Số lại có càng nhiều thiếu sót.
Tỉ như, tuy cửu số cũng có khái niệm về bình phương, lập phương, nhưng lại chỉ có phương trình tuyến tính mà chưa có phương trình bậc hai, bậc ba, hay khái niệm nghiệm âm, cũng không biết đến đồ thị của hàm bậc hai, bậc ba. Đây kỳ thực chính là lý do tại sao Trần đại nho ban nãy phải ngồi thử thay số lần lượt từ 1 đến 35 vào phương trình lệ phí, mà không đoán được đồ thị hàm số sẽ có chỗ vòng xuống. Dẫu sao, tư duy của con người chúng ta vẫn luôn bị giới hạn bởi những kiến thức mà mỗi người được biết, được học. Và chỉ có những bậc anh tài mới có thể tư duy vượt thời đại.
Thành thử, tất cả những điều mà mỗi người hiện đại coi là kiến thức phổ thông, coi là ai cũng biết thì tại một điểm nào đó ở trong quá khứ đều từng là những phát kiến vĩ đại. Học sinh hiện đại ai cũng biết dùng định lý Pytago để tính cạnh tam giác vuông, nhưng trước Pytago, định lý này cũng không tồn tại. Thậm chí, Einstein hay Galileo còn từng bị chửi bới, tẩy chay rất nhiều khi đưa ra các lý luận khác với kiến thức chung của thời đại, nhưng những điều họ nói ngày ấy hôm nay đều được coi là thường thức.
Thế nên, kỳ thực cũng không phải là Nguyễn Đông Thanh hay Đỗ Thải Hà tài giỏi hơn nhân tài của Nho Đạo Huyền Hoàng giới, mà nói cho chính xác thì số học hiện đại đầy đủ, tinh hoa, và có tích lũy lớn hơn Cửu Số. Tất nhiên, đây là nói về bản chất vấn đề, còn biểu hiện bề ngoài và điều mà người của Huyền Hoàng giới sẽ nghĩ về trận đấu giữa Đỗ Thải Hà và các vị thượng khách của Lam Ba trà lâu thì lại là chuyện khác.
Hiện tại kể đến Trần Dự Chi, phó quán chủ của Lam Ba thư quán, thách đấu Đỗ Thải Hà.
Họ Trần đọc đề đầu tiên:
“Có chín đồng tiền cùng mệnh giá, tám đồng là thật, một đồng là giả, cùng một cán cân. Biết tiền giả nhẹ hơn tiền thật, hỏi cần cân bao nhiêu lần để tìm ra đồng tiền giả?”
“Hai lần. Chia chín đồng tiền ra thành ba nhóm, mỗi nhóm ba đồng. Cân hai nhóm bất kỳ, nếu cán cân thăng bằng, thì tiền giả nằm trong nhóm còn chưa cân. Ngược lại, nếu cán cân lệch về một bên thì tiền giả nằm ở bên nhẹ hơn.
“Lại tiếp tục lấy hai đồng bất kỳ trong nhóm đã xác định có tiền giả đem lên cân. Như trước, nếu cán cân cân bằng, thì đồng tiền giả là đồng cuối cùng chưa cân, còn nếu cân lệch về một bên, thì tiền giả chính là đồng nhẹ hơn trong hai đồng đang cân.”
Trần Dần hừ lạnh một tiếng, song không thể không công nhận đáp án của Đỗ Thải Hà. Lão ta lại hỏi:
“Có một con voi. Làm sao để biết cân nặng của nó nếu không dùng thần thông, không đi tìm người của Hàn gia trợ giúp, cũng không cho giết hay cắt nhỏ.”