Lịch Sử Vạn Vật

Phần II – KÍCH CỠ TRÁI ĐẤT. 4. KÍCH CỠ CỦA VẠN VẬT (2)


1 năm

trướctiếp

Guillaume Le Gentil là người kém may mắn, những trải nghiệm của ông được tóm tắt trong cuốn Corning of Age in the Milky Way của Timothy Ferris. Le Gentil khởi hành từ nước Pháp, đến Ấn Độ để quan sát sự chuyển động của sao Kim, nhưng mãi đến khi sự chuyển động xuất hiện ông vẫn đang lênh đênh trên biển cùng con tàu ngụp lặn.

Không nản lòng, Le Gentil tiếp tục tìm đến Ấn Độ để chờ đợi sự chuyển động tiếp theo của sao Kim vào năm 1769. Với tám năm chuẩn bị, ông xây dựng đài quan sát hạng nhất, kiểm tra kỹ mọi thiết bị, và sẵn sàng trong trạng thái tốt nhất. Vào sáng ngày 4 tháng Sáu, 1769, ông thức giấc để chào đón một ngày tốt đẹp, nhưng, khi sao Kim bắt đầu chuyển động, một đám mây lướt qua che khuất bầu trời và ở mãi đó trong suốt khoảng thời gian sao Kim chuyển động: ba giờ, mười bốn phút, bảy giây.

Xui xẻo, Le Gentil thu dọn hành lý và lên đường đến cảng gần nhất, nhưng trên đường đi ông mắc bệnh lỵ và phải trì hoãn mọi việc gần một năm trời. Dù sức khỏe chưa hồi phục, ông vẫn lên tàu. Con tàu này suýt bị nhấn chìm bởi một cơn bão ngoài khơi châu Phi. Khi ông về đến nhà, mười một năm rưỡi đã trôi qua kể từ khi ông rời quê nhà, và chẳng gặt hái được gì cả, ông phát hiện ra rằng người thân của ông cứ ngỡ ông đã chết nên họ đang ra sức tranh giành tài sản của ông.

Đồng thời, những thất vọng mà mười tám nhà khoa học người Anh phải trải qua có phần kém khốc liệt hơn. Mason kết hợp với chuyên viên vẽ bản đồ địa chính tên là Jeremiah Dixon, có vẻ như họ khá hòa hợp với nhau. Nhiệm vụ của họ là đến Sumatra và ghi lại biểu đồ chuyển động của sao Kim ở đó, nhưng sau một đêm trên biển tàu của họ bị tấn công bởi một tàu chiến của Pháp. (Mặc dù các nhà khoa học trên thế giới hòa hợp với nhau, nhưng các quốc gia lại không). Mason và Dixon gửi một bức điện tín cho Hội Hoàng gia với lời nhận xét rằng chuyến đi này quá nguy hiểm và tự hỏi liệu họ có nên trì hoãn mọi việc lại không. Họ nhận được lời khiển trách gay gắt và lạnh lùng từ phía Hội Hoàng gia với lưu ý rằng họ đã được trả lương để làm việc này, rằng quốc gia và Hội khoa học đang trông chờ nơi họ, và rằng thất bại của họ sẽ dẫn đến sự mất uy tín không thể cứu vãn. Cố kiềm chế, họ tiếp tục lên đường, nhưng trên đường đi họ nhận được tin báo rằng Sumatra đã rơi vào tay của người Pháp và thế nên họ quyết định quan sát sự chuyển động của sao Kim từ Mũi Good Hope. Trên đường quay về họ ghé qua vỉa St. Helena, tại đây họ gặp Maskelyne, người đã không gặp may trong quá trình quan sát do bởi sự cản trở của một đám mây lớn. Mason và Kaskelyne kết bạn và cùng nhau trải qua nhiều tuần lễ để vẽ bản đồ về các dòng thủy triều.

Chẳng bao lâu sau, Maskelyne quay về Anh quốc, tại đây ông trở thành nhà thiên văn học của Hoàng gia, và Mason và Dixon – lúc này đã dày dạn hơn – trải qua bốn năm khảo sát đường đi của các luồng thủy triều suốt 244 dặm ở vùng hoang vu nguy hiểm thuộc Hoa Kỳ.

Quay trở lại châu Âu, Maskelyne và các đối tác ở Đức và Pháp bị buộc phải thừa nhận rằng công tác đo lường sự chuyển động của sao Kim vào năm 1761 hoàn toàn là một thất bại. Thật trớ trêu, một trong những rắc rối ở đây là có quá nhiều kết quả quan sát khác nhau, tạo ra nhiều mâu thuẫn không thể giải quyết. Thay vì vậy, biểu đồ thành công về sự chuyển động của sao Kim lại được thiết lập bởi một người không mấy nổi tiếng, một sĩ quan hải quân sinh tại Yorkshire tên là James Cook, ông đã quan sát sự chuyển động của sao Kim vào năm 1769 từ một đỉnh đồi đầy nắng ở Tahiti. Khi ông quay về, lúc này đã có đủ thông tin để nhà thiên văn học người Pháp tên là Joseph Lalande tính toán được rằng khoảng cách trung bình từ trái đất đến mặt trời là hơn 150 triệu kilomet. (Hai lần chuyển động khác tiếp theo của sao Kim trong thế kỷ mười chín đã cho phép các nhà thiên văn có được con số chính xác là 149,59 triệu kilomet, từ đó trở đi người ta xem đây là con số chuẩn mực. Khoảng cách chính xác, như chúng ta biết ngày nay, là 149,597870691 triệu kilomet). Cuối cùng thì trái đất cũng đã có được một vị trí xác định trong không gian.

Về phần Mason và Dixon, họ quay về Anh quốc với danh hiệu là người hùng khoa học và vì một số lý do nào đó, họ đã cắt đứt tình bạn với nhau. Cuốn Dictionary of National Biography kể về Dixon có đoạn nói rằng ông ta được xem là “đã được sinh ra trong một mỏ than”, và rằng ông qua đời tại Durham vào năm 1777. Ngoài tên tuổi và sự hợp tác lâu dài với Mason, chúng ta không biết gì khác về ông.

Về phần Mason, chúng ta biết rằng vào năm 1772, với chỉ thị của Maskelyne, Mason nhận nhiệm vụ tìm kiếm một đỉnh núi thích hợp cho thử nghiệm về độ lệch của trọng lực, ngọn núi thích hợp họ tìm được là một ngọn núi ở vùng cao nguyên Scotland, ngay bên trên Loch Tay, có tên gọi là Schiehallion. Tuy nhiên, không có tài liệu nào nói về mùa Hè mà ông đã trải qua tại đó để thực hiện thử nghiệm này. Động tác tiếp theo của ông là năm 1786, đột ngột và bí ẩn, ông xuất hiện tại Philadelphia cùng vợ và tám đứa con, với vẻ khá túng thiếu. Ông không quay về Hoa Kỳ kể từ khi hoàn tất cuộc điều nghiên của mình tại đó mười tám năm về trước. Vài tuần sau ông qua đời.

Vì Mason từ chối thực hiện cuộc thử nghiệm ở ngọn núi này, Maskelyne đích thân thực hiện. Vì vậy suốt bốn tháng mùa Hè 1774, Maskelyne sống trong một túp lều ở một thung lũng xa xôi thuộc Scotland và hướng dẫn nhóm các nhà khoa học thực hiện hàng trăm tính toán từ mọi góc độ. Để tìm được khối lượng của ngọn núi này từ những thông số này họ cần phải thực hiện nhiều tính toán khô khan, nhân vật chính đảm đương việc tính toán này là một nhà toán học tên Charles Hutton. Nhóm các nhà khoa học này đã thành lập được một biểu đồ với các thông số cụ thể.

Ngoại suy từ các phép đo Schiehallion, Hutton tính toán được khối lượng của trái đất là 5.000 triệu triệu tấn, từ kết quả này ông có thể suy đoán hợp lý về khối lượng của mọi vật thể chính trong hệ mặt trời, kể cả mặt trời. Thế nên từ thử nghiệm này chúng ta biết được khối lượng của trái đất, mặt trời, mặt trăng, và những hành tinh khác, kể cả mặt trăng của chúng, và đường đồng mức của chúng – một kết quả không tệ cho một Mùa hè làm việc cật lực.

Tuy nhiên, không phải ai cũng hài lòng với những kết quả này. Sự thiếu sót của thử nghiệm Schiehallion là: nó không thể có được con số thật sự chính xác nếu không có được tỷ trọng chính xác của ngọn núi. Để thuận tiện, Hutton mặc định rằng ngọn núi này có cùng một tỷ trọng giống như loại đá thông thường, khoảng 2,5 lần so với nước, nhưng đây gần như chỉ là sự ước chừng tương đối.

Một người không mấy nổi tiếng quan tâm đến vấn đề này là một mục sư tên John Michell, ông sống tại ngôi làng hẻo lánh Thornhill thuộc Yorkshire. Dù hoàn cảnh khó khăn và xa xôi, Michell là một trong những nhà lý luận khoa học vĩ đại nhất của thế kỷ mười tám và nhận được nhiều sự quý mến.

Ông nhận biết được sự dao động của các trận động đất, tiến hành nhiều nghiên cứu độc đáo về từ trường và trọng lực, và, khá phi thường, hình dung được khả năng về các lỗ đen (trước bất kỳ ai hai trăm năm) – điều mà ngay cả Newton cũng không làm được. Khi nhạc sĩ William Herschel, sinh tại Đức, xác định được sự đam mê của mình đối với thiên văn học, chính Michell là người hướng dẫn ông cách chế tạo kính viễn vọng. [4]

Nhưng trong số tất cả những đóng góp của Michell, không gì tài tình hay có ý nghĩa hơn một cỗ máy mà ông đã thiết kế và xây dựng để đo lường khối lượng của trái đất. Thật đáng tiếc, ông qua đời trước khi ông có thể thực hiện các thử nghiệm này, và cả ý tưởng này lẫn cỗ máy này đều được chuyển giao cho một nhà khoa học lỗi lạc tại London tên là Henry Cavendish.

Chúng ta có thể nói Cavendish là một cuốn sách kinh điển do bởi sự uyên bác của ông. Được sinh ra trong một gia đình giàu có – ông nội của ông là Công tước của Devonshire và Kent – ông là nhà khoa học người Anh tài năng nhất trong thời đại của mình, nhưng đồng thời ông cũng là người lạ lùng nhất. Theo lời của một trong vài người viết tiểu sử về ông, ông là người rất nhút nhát đến mức “luôn bị ám ảnh bởi bệnh tật”. Đối với ông thì bất kỳ sự tiếp xúc nào với con người cũng khiến ông cảm thấy lo lắng.

Một dạo nọ ông vừa mở cửa ra thì bắt gặp ngay một người hâm mộ gốc người Áo, người này vừa mới từ Vienna đến đây, đang đứng trên bậc thềm. Người này bắt đầu nói những lời cảm phục dành cho Cavendish với giọng xúc động. Chỉ trong chốc lát Cavendish nhận được những lời ca tụng cứ như thể chúng là một luồng gió mạnh tạt vào mặt và sau đó, vì không thể chịu đựng thêm được nữa, ông lẻn trốn ra khỏi nhà, để cửa mở toang.

Dù đôi khi ông cũng đánh bạo giao thiệp cùng mọi người – ông đặc biệt thường tham gia các buổi hội họp khoa học hàng tuần được tổ chức bởi nhà tự nhiên học nổi tiếng là Ngài Joseph Banks – mọi người vẫn nhận định rằng Cavendish là người rất khó gần. Những ai muốn tìm hiểu quan điểm của ông đều được khuyên là hãy đi thơ thẩn trong khu phố của ông rồi giả vờ như tình cờ gặp ông và hỏi chuyện. Nếu lời nói của họ có giá trị về mặt khoa học thì họ có thể nhận được một câu trả lời trệu trạo, nhưng thường thì họ sẽ nhận được giọng điệu the thé tức giận (giọng nói của ông có tần số khá cao), và Cavendish lập tức tìm cách lẩn trốn để tìm một nơi nào đó yên tĩnh hơn.

Tài sản và hoàn cảnh của ông giúp ông có thể biến ngôi nhà của mình ở Clapham thành một phòng thí nghiệm lớn, ông bố trí phòng thí nghiệm này thành nhiều khu vực riêng biệt – điện, nhiệt, trọng lực, khí, bất kỳ lĩnh vực nào liên quan đến khoa học. Suốt nửa cuối thế kỷ mười tám, ông tập trung nghiên cứu về các đề tài cơ bản – đặc biệt là khí và điện. Tại Hoa Kỳ, Benjamin Franklin dành cả đời để cố thả một chiếc diều trong một cơn bão điện từ. Tại Pháp, một nhà hóa học tên là Pilatre de Rozier kiểm tra khả năng bốc cháy của hydro bằng cách ngậm hydro vào miệng và phun qua ngọn lửa đang bốc cháy, chứng minh được rằng hydro là chất dễ cháy và có khả năng phát nổ và rằng lông mày không nhất thiết phải xuất hiện trên gương mặt con người. Về phần Cavendish, ông tiến hành những thử nghiệm với điện, ông tự lấy mình làm vật thí nghiệm, đưa dòng điện vào cơ thể để tìm hiểu tác động của nó đối với con người, có những lúc ông phải ngã lăn ra bất tỉnh vì bị điện giật.

Trong suốt đời mình, Cavendish đã thực hiện nhiều khám phá nổi bật – ông là người đầu tiên có thể tách hydro và là người đầu tiên kết hợp hydro với oxy để tạo ra nước – nhưng hầu hết mọi thử nghiệm của ông ta đều không có sự kết hợp của người lạ. Tiếp tục khiến các đồng nghiệp khoa học thêm cáu tiết, ông thường nói bóng gió về những kết quả của những thử nghiệm của mình, những kết quả mà ông chưa bao giờ nói với ai. Với sự bí ẩn của mình, ông không những giống Newton mà còn tỏ ra lập dị hơn cả Newton. Những thử nghiệm của ông về tính dẫn điện luôn xuất hiện trước thời đại cả một thế kỷ, nhưng đáng tiếc là chúng ta chỉ khám phá được những thử nghiệm của ông sau khi một thế kỷ đã trôi qua. Thật ra, chúng ta không biết được những khám phá vĩ đại của ông mãi đến cuối thế kỷ mười chín, khi nhà vật lý học James Clerk Maxwell nhận nhiệm vụ biên tập các tài liệu của Cavendish.

Ngoài ra, dù không nói với bất kỳ ai, Cavendish cũng khám phá hoặc đề cập đến định luật bảo toàn năng lượng, quy luật Ohm, định luật Dalton về áp suất từng phần, định luật Richter về tỷ lệ nghịch đảo, định luật khí Charles, và các nguyên tắc truyền điện. Đây chỉ là một phần trong những khám phá của ông. Theo nhà sử học khoa học J. G. Crowther, ông cũng tiên đoán được “kết quả của Kelvin và G. H. Darwin về tác động của sự ma sát thủy triều đối với việc làm chậm đi vòng xoay của trái đất, và khám phá của Larmor, được phát hành năm 1915, về tác động của sự làm nguội không khí cục bộ… kết quả của Pickering về việc đông lạnh các hỗn hợp, và kết quả của Rooseboom về sự cân bằng nhiều pha”. Cuối cùng, ông để lại các manh mối trực tiếp dẫn đến khám phá về nhóm các nguyên tố được gọi là khí hiếm (khí trơ), trong số này có một vài khí rất khó xác định, mãi đến năm 1962 chúng ta mới có thể xác định được loại khí cuối cùng trong nhóm này. Nhưng điều thú vị ở đây chính là thử nghiệm cuối cùng của Cavendish vào cuối mùa Hè năm 1797, lúc này ông đã được sáu mươi bảy tuổi, ông chuyển sang quan tâm đến các thùng trang thiết bị do John Michell để lại cho mình.

Khi được lắp ráp lại với nhau, các dụng cụ của Michell trông giống như một cỗ máy truyền trọng của thế kỷ mười tám. Nó kết hợp trọng lực, đối trọng, con lắc, trục, và dây xoắn. Ở giữa cỗ máy có hai quả bóng chì, mỗi quả nặng 350 pound (1 pound = 0,454kg theo hệ đo lường của Anh Mỹ), chúng được treo cạnh hai quả cầu nhỏ hơn. Ý tưởng ở đây là nhằm đo lường độ lệch trọng lực của hai quả cầu này bởi những quả cầu lớn hơn, điều này giúp chúng ta đo được hằng số hấp dẫn, và từ đó chúng ta có thể suy ra được trọng lượng (nói cho đúng là khối lượng) của trái đất. [5]

Vì trọng lực (lực hấp dẫn) giữ cho các hành tinh di chuyển theo quỹ đạo và khiến vật chất rơi xuống, chúng ta nghĩ rằng nó là một lực rất lớn, nhưng thực ra không phải thế. Nó chỉ mạnh khi nó là tập hợp lớn, khi một vật thể khổng lồ, chẳng hạn mặt trời, tác động đến một vật thể khổng lồ khác, chẳng hạn trái đất. Ở mức độ cơ bản, trọng lực hoàn toàn chẳng mạnh mẽ gì. Mỗi khi bạn nhặt cuốn sách lên khỏi mặt bàn hoặc nhặt một đồng xu lên khỏi sàn nhà, bạn dễ dàng vượt qua được sức hút của trái đất này. Những gì Cavendish cố gắng thực hiện là nhằm đo lường trọng lực ở mức độ nhỏ nhất.

Sự tinh vi chính là bí quyết ở đây. Trong căn phòng chứa bộ dụng cụ đo lường này không tồn tại bất kỳ sự nhiễu loạn nào dù nhỏ nhất, thế nên Cavendish đứng ở phòng kế bên và quan sát thử nghiệm này qua một chiếc kính viễn vọng. Công việc này được thực hiện vô cùng chính xác và có liên quan đến mười bảy thông số có mối quan hệ nhạy cảm với nhau, phải mất gần một năm trời ông mới hoàn tất xong công việc này. Khi hoàn tất những tính toán của mình, Cavendish thông báo rằng trái đất cân nặng hơn 13.000.000.000.000.000.000.000 pound, hoặc sáu tỷ triệu tấn theo hệ mét (1 tấn theo hệ mét = 1.000 kilogam hoặc = 2.205 pound).

Ngày nay, các nhà khoa học có được các loại máy tự động chính xác đến mức họ có thể xác định được trọng lượng của một con vi khuẩn và nhạy đến mức có thể phát hiện được cử chỉ ngáp của một người đứng cách xa bảy mươi lăm fut (đơn vị đo lường của Anh, 1 fut = 0,3048 mét), nhưng họ vẫn chưa cải tiến được những số đo của Cavendish vào năm 1797. Ước lượng tốt nhất hiện nay về trọng lượng của trái đất là 5,9725 tỷ triệu tấn theo hệ mét, chỉ chênh lệch 1 phần trăm so với khám phá của Cavendish. Thật thú vị, tất cả những điều này đều chứng thực những tiên đoán của Newton trước khám phá của Cavendish 110 năm mà không cần bất kỳ bằng chứng thực nghiệm nào.

Vì vậy, vào cuối thế kỷ mười tám các nhà khoa học đã biết được chính xác hình dạng và kích cỡ của trái đất và khoảng cách của nó từ mặt trời và các hành tinh; và lúc này Cavendish, thậm chí không cần rời khỏi nhà, đã giúp họ có được trọng lượng của trái đất. Thế nên bạn có thể nghĩ rằng việc xác định độ tuổi của trái đất sẽ là việc tương đối dễ. Xét cho cùng thì những nguyên vật liệu cần thiết đang nằm ngay dưới chân họ. Nhưng không. Loài người đã phải tách nguyên tử và phát minh ra truyền hình, nylon, và cà phê uống liền trước khi họ có thể xác định được độ tuổi của hành tinh này.

Để tìm hiểu tại sao, chúng ta phải tìm đến miền Bắc Scotland và bắt đầu với một người thông minh và vui tính, rất ít người biết đến ông ta, chính ông là người đã phát minh ra môn khoa học được gọi là địa chất học.

____________

[1] Đạc tam giác, phương pháp đo đạc họ đã chọn, là một kỹ thuật phổ biến dựa vào đặc điểm địa lý rằng nếu bạn biết được chiều dài của một cạnh hình tam giác và độ của hai góc, bạn có thể tìm ra được chiều dài của hai cạnh còn lại mà không cần rời khỏi ghế. Giả sử, ví dụ, rằng bạn và tôi muốn biết khoảng cách từ trái đất đến mặt trăng. Vận dụng phương pháp đạc tam giác, điều đầu tiên chúng ta cần phải làm là đặt ra một khoảng cách nhất định giữa hai chúng ta, giả sử bạn ở Paris còn tôi ở Moscow và cả hai chúng ta cùng nhìn lên mặt trăng tại cùng một thời điểm. Lúc này nếu bạn hình dung một đường thẳng nối ba điểm này với nhau – bạn, tôi, và mặt trăng – thì nó sẽ hình thành nên một hình tam giác. Chúng ta đo lường khoảng cách giữa bạn và tôi và hai góc của chúng ta, và rồi chúng ta có thể dễ dàng tính toán tất cả những thông số còn lại. (Vì 3 góc của một hình tam giác cộng lại luôn luôn là 180 độ, nếu bạn biết giá trị tổng 2 góc thì bạn có thể lập tức tính toán được giá trị của góc thứ ba; và khi bạn biết được hình dạng chính xác của một tam giác và độ dài của một cạnh thì bạn có thể xác định được độ dài của hai cạnh còn lại). Thực ra đây là phương pháp đo đạc được sử dụng bởi nhà thiên văn Hy Lạp Hypparchus của Nicaea vào năm 150 trước Công nguyên, để tìm ra khoảng cách từ trái đất đến mặt trăng. Khi đo lường trên mặt đất, các nguyên tắc của phương pháp đạc tam giác cũng giống vậy, ngoại trừ một việc là hình tam giác này không hướng lên không trung mà được đặt trên một tấm bản đồ. Khi có được giá trị về khoảng cách một độ của Kinh tuyến, họ có thể xác định được chu vi của trái đất.

[2] Tốc độ xoay tròn của bạn phụ thuộc vào vị trí của bạn. Tốc độ xoay tròn của trái đất dao động từ hơn 1.000 dặm một giờ tại đường Xích đạo đến 0 dặm một giờ tại hai cực.

[3] Sự chuyển động sắp tới của sao Kim sẽ diễn ra vào ngày 8 tháng Tám năm 2004, tiếp theo là vào năm 2012. Suốt thế kỷ hai mươi nó không hề chuyển động.

[4] Vào năm 1781 Herschel trở thành người đầu tiên trong kỷ nguyên hiện đại khám phá được một hành tinh, ông muốn đặt tên cho nó theo tên Hoàng đế Anh là George, nhưng đã bị bác bỏ. Thay vì thế nó trở thành sao Uranus (Thiên vương).

[5] Đối với các nhà vật lý học, khối lượng và trọng lượng là hai phạm trù khác nhau. Khối lượng của bạn không thay đổi dù bạn xuất hiện ở đâu, nhưng trọng lượng của bạn thay đổi tùy thuộc vào việc bạn xuất hiện cách bao xa từ tâm của những vật thể khổng lổ chẳng hạn như trái đất của chúng ta. Khi bạn xuất hiện ở mặt trăng, trọng lượng của bạn sẽ nhẹ hơn nhiều nhưng khối lượng của bạn không đổi. Trên trái đất, vì mọi lý do thực tiễn, khối lượng và trọng lượng là một, vì thế hai từ ngữ này có thể được dùng đồng nghĩa với nhau, ít nhất điều này cũng đúng khi bạn bước ra khỏi phòng học.


Trải nghiệm đọc truyện tuyệt vời trên ứng dụng TYT

Download on the App Store Tải nội dung trên Google Play

trướctiếp